Thrombin induces fibroblast CCL2/JE production and release via coupling of PAR1 to Galphaq and cooperation between ERK1/2 and Rho kinase signaling pathways.
نویسندگان
چکیده
Uncontrolled activation of the coagulation cascade after tissue injury has been implicated in both inflammation and tissue fibrosis. Thrombin exerts pluripotent cellular effects via its high-affinity receptor, proteinase-activated receptor-1 (PAR(1)) and signaling via Galpha(i/o), Galpha(q), or Galpha(12/13). Activation of PAR(1) on fibroblasts, a key effector cell in fibrosis, results in the induction of several mediators, including the potent monocyte and fibrocyte chemoattractant CCL2. The aim of this study was to identify the G protein and signaling pathway involved in PAR(1)-mediated CCL2 production and release. Using a novel PAR(1) antagonist that blocks the interaction between PAR(1) and Galpha(q), we report for the first time that PAR(1) coupling to Galpha(q) is essential for thrombin-induced CCL2 gene expression and protein release in murine lung fibroblasts. We further demonstrate that these effects are mediated via the cooperation between ERK1/2 and Rho kinase signaling pathways: a calcium-independent protein kinase C (PKC), c-Raf, and ERK1/2 pathway was found to mediate PAR(1)-induced CCL2 gene transcription, whereas a phospholipase C, calcium-dependent PKC, and Rho kinase pathway influences CCL2 protein release. We propose that targeting the interaction between PAR(1) and Galpha(q) may allow us to selectively interfere with PAR(1) proinflammatory and profibrotic signaling, while preserving the essential role of other PAR(1)-mediated cellular responses.
منابع مشابه
Activation of proteinase-activated receptor 1 promotes human colon cancer cell proliferation through epidermal growth factor receptor transactivation.
Serine proteases are now considered as crucial contributors to the development of human colon cancer. We have shown recently that thrombin is a potent growth factor for colon cancer cells through activation of the aberrantly expressed protease-activated receptor 1 (PAR1). Here, we analyzed the signaling pathways downstream of PAR1 activation, which lead to colon cancer cell proliferation in HT-...
متن کاملRho-family GTPases modulate Ca(2+) -dependent ATP release from astrocytes.
Previously, we reported that activation of G protein-coupled receptors (GPCR) in 1321N1 human astrocytoma cells elicits a rapid release of ATP that is partially dependent on a G(q)/phophospholipase C (PLC)/Ca(2+) mobilization signaling cascade. In this study we assessed the role of Rho-family GTPase signaling as an additional pathway for the regulation of ATP release in response to activation o...
متن کاملThrombin-induced expression of endothelial CX3CL1 potentiates monocyte CCL2 production and transendothelial migration.
CX3CL1 (fractalkine, neurotactin) is the sole CX3C chemokine. It induces monocyte locomotion in its cleaved form, but in its membrane-anchored form, it also acts as an adhesion molecule. The expression of CX3CL1 is up-regulated in endothelial cells by proinflammatory cytokines such as IL-1 or TNF-alpha. Here, we studied the effect of the serine protease thrombin on endothelial CX3CL1 induction ...
متن کاملThe neutrophil serine protease PR3 induces shape change of platelets via the Rho/Rho kinase and Ca(2+) signaling pathways.
INTRODUCTION Proteinase 3 (PR3) is released from neutrophil azurophilic granules and exerts complex effects on the inflammatory process. PR3 catalyzes the degradation of a number of macromolecules, but the consequences on blood cells are less well defined. In the present study, the effect of PR3 on human platelets was thoroughly investigated. METHODS The experiments were performed on washed p...
متن کاملKallikrein 6 signals through PAR1 and PAR2 to promote neuron injury and exacerbate glutamate neurotoxicity.
CNS trauma generates a proteolytic imbalance contributing to secondary injury, including axonopathy and neuron degeneration. Kallikrein 6 (Klk6) is a serine protease implicated in neurodegeneration, and here we investigate the role of protease-activated receptors 1 (PAR1) and PAR2 in mediating these effects. First, we demonstrate Klk6 and the prototypical activator of PAR1, thrombin, as well as...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular biology of the cell
دوره 19 6 شماره
صفحات -
تاریخ انتشار 2008